Uma Proposta de Processamento Digital de Ovoscopia

Guilherme Augusto Moraes de Deus¹, Diogo Paes Fernandes^{1,} Cristiane de Fátima dos Santos¹

¹Instituto Federal Goiano - Campus Urutaí - Rodovia Geraldo Silva Nascimento Km 2,5. CEP 75790-000 - Urutaí - Goiás - Brasil. Fone/Fax: (64) 3465-1900.

{guilherguto10,crisfsantos, paesfernandes}@gmail.com

Resumo. O presente trabalho apresenta uma proposta para realizar a seleção de ovos na criação. Para isso um modelo de ovoscopia automatizada via processamento de imagens é apresentado.

Palavras- chave: Processamento Digital de Imagens, Reconhecimento de Padrões, Controle de Qualidade de Ovos de Galinha

Abstract. This paper presents a proposal for conducting the selection of eggs in creation. For this purpose a model of ovoscopy via automated image processing is presented.

Key Words: Digital Image Processing, Pattern Recognition, Quality Control of Hen's Eggs.

1. INTRODUÇÃO

Em uma determinada empresa da região sudeste do interior de Goiás, diariamente são abatidos centenas de milhares de frangos. Para que o fornecimento de aves seja ininterrupto, milhares de ovos são postos em chocadeiras todos os dias. Entretanto, como a quantidade é bastante significativa para fazer uma verificação rigorosa, existem possibilidades de muitos ovos serem postos na incubadora sem ao menos possuir um embrião, o que representa um desperdício de recursos físicos e financeiros, uma vez que foram dispensados gastos com vacinas *in-ovo*, transporte e locação.

Dessa maneira, o sistema que pretende-se desenvolver, irá propiciar um controle automatizado por meio do processamento de imagens digitais, isto é, será criado um banco de dados com imagens de ovos em todos os estágios de fecundação e com anomalias, utilizando técnicas para certificar se os ovos estão fecundados e se não possui nenhuma anomalia que possa comprometer sua qualidade. O sistema irá comparar as imagens recebidas e determinar o estado e a qualidade do ovo. Após essa etapa o programa irá determinar qual o destino do ovo em questão: encaminhado para a incubadora, utilizado no mercado alimentício (para ovos não fecundados) cumprindo as normas e padrões do mercado ou se será descartado, acarretando assim, a diminuição do desperdício e gerando maior rapidez, qualidade e receita para a empresa.

2. FUNDAMENTAÇÃO TEÓRICA

O ovoscópio é um aparelho para se fazer a verificação do estado da parte interna do ovo e identificando as trincas na parte externa do ovo, utilizando um foco luminoso por de trás. Normalmente, a verificação é feita manualmente e a olho nu. A figura 1 ilustra a questão.

Figura 1 – Ovoscopia em ovos de avestruz

O sistema visual humano é muito complexo, porém, sua principal característica é a eficiência, o sistema visual humano é dotado de inteligência já que se adapta rapidamente as situações sem que tenhamos que fazer algo, sem falar que junto a aspectos cognitivos natos do ser humano, tem se habilidades surpreendentes, como a capacidade de inferir sobre informação incompleta, reconhecer algo ou alguém, etc. Por isso é o modelo a ser alcançado quando o assunto é reconhecer imagens, Pedrini e Schwartz (2008).

Adaptá-lo totalmente em um único software seria impossível, porém realizar algumas aproximações é perfeitamente possível. Segundo Albuquerque (2001), a pesquisa é direcionada para a solução de um problema particular e com isso os requisitos para que se ponha em prática são menores e menos complexos, pois poderemos controlar desde a captura das imagens, até as situações bem específicas ao problema a ser tratado.

2.1 Etapas fundamentais para um Sistema de Análise de Imagens

Conforme Pedrini e Schwartz (2008), o reconhecimento de imagem é feito por várias etapas, como visto na figura 2, tais etapas são embasadas no sistema visual humano e basicamente dividem a tarefa de analisar/reconhecer uma imagem em tarefas mais especificas:

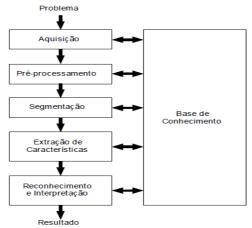


Figura 2- Etapas de um Sistema de Processamento Imagens.

a) Domínio do Problema e Resultado.

No caso do objeto em estudo, o domínio do Problema é o ovo que vai ser "lido" pelo sistema, através de uma imagem de uma bandeja contendo vários ovos e o problema se resume em dizer se estes ovos contêm um embrião e se este apresenta um desenvolvimento normal para sua idade, a partir disso um destino poderá ser dado ao ovo.

b) Aquisição

A aquisição é de fato o primeiro passo para o reconhecimento de imagem. Nesta etapa será produzida a saída de uma imagem digitalizada contendo os ovos na bandeja, e para que seja possível é necessário utilizar um dispositivo que converta a informação óptica em um sinal digital, podendo ser uma câmera de vídeo. Dentre os aspectos do projeto envolvidos nesta etapa, pode-se mencionar: as condições de iluminação, a velocidade que cada ovo passará na frente da câmera, a resolução entre outras características.

c) Pré-Processamento.

Esta etapa visa melhorar a qualidade da imagem. Porém, tratando-se de câmeras modernas, e com suas funções estabelecidas (contraste, brilho, etc.) já pré-definidas, acreditamos que não será necessária a correção de nenhum aspecto da imagem.

d) Segmentação.

Existem diversas técnicas de segmentação de imagens. Sendo que essa fase basicamente visa dividir a imagem separando os elementos para que possam ser analisados em um contexto isolado. Como iremos trabalhar com níveis de cinza, aplicaremos um filtro de detecção de contorno da região, a fim de ter condições de separar cada ovo dos demais, em seguida deverão ser aplicadas outras técnicas para isolar os contornos.

e) Extração de Característica.

Essa fase visa extrair das imagens resultantes da segmentação as características ou propriedades que serão importantes para a identificação dos objetos. Essa fase muitas vezes é vinculada a um descritor de imagens, no caso específico de ovos fertilizados, acredita-se que informações estatísticas (por exemplo média) podem ser de grande ajuda.

f) Reconhecimento e Interpretação.

Na última fase do sistema, o *Reconhecimento* ou *classificação* irá atribuir um rótulo a um objeto baseando nas suas características. Já a interpretação, consiste em atribuir significado a um conjunto de objetos reconhecidos. Um exemplo, o formato da bolsa de ar dentro de um ovo poderá conter informações daquele embrião, ou se as formas de um embrião estão ou não adequadas.

g) Base de Conhecimento.

A tarefa de cada etapa descrita acima deve conter a existência do conhecimento sobre o problema a ser resolvido, cujo tamanho e complexidade podem variar. A ideia dessa Base de Conhecimento é guiar e orientar o funcionamento e a comunicação entre cada etapa.

3. MATERIAIS E MÉTODOS

A ferramenta a ser utilizada no desenvolvimento será o Matlab, e dentre as técnicas de processamento de imagens pode-se citar: filtros para extração de bordas como o filtro canny (Pedrini e Schwartz, 2008), limiarização, alguma transformada (a ser definida) e redes neurais.

4. CONCLUSÃO

O presente trabalho apresentou o esboço da criação de um sistema automatizado na classificação de ovos de indústria de produção de aves, mas inicialmente voltado para produção de pintos, e futuramente podem ser feitas adaptações para que possa ser implantado na indústria de ovos in-natura. Este sistema irá substituir o tradicional método de seleção manual que as empresas utilizam, mesmo tendo todos os outros processos automatizados. O exame de ovoscopia será todo automatizado, podendo assim ter um melhor controle de qualidade com uma produção mais elevada e menos perdas.

5. REFERÊNCIAS

____Matlab. **Image Processing Toolbox Documentation** (2009). Disponível em http://www.mathworks.com/access/helpdesk, /help/toolbox/nnet/nnet.shtml?BB=1>.

PEDRINI, H. e SCHWARTZ, W. R. **Análise de Imagens Digitais**, 1ed, São Paulo: Thomson Learning, 2008.

ALBUQUERQUE, Márcio P.; ALBUQUERQUE, Marcelo P.. **Processamento de Imagens:** Métodos e Análises. Rio de Janeiro, 2001. Disponível em: http://www.cbpf.br/cat/pdsi/pdf/ProcessamentoImagens.PDF